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Equations have heen derived from which long-range corrections to molecular simulation 
results for both uniform and nonuniform systems can he calculated. An important feature 
in the latter is the distortion of the singlet distribution function which is a consequence 
of the finite system necessary for simulation. The theory has heen applied to the calculation 
of long-range corrections in a physical adsorption system (12-6 Ar on “homogeneous” 
graphite at 120 K (T* = 1.002)). The results of these calculations, using an augmented 
summation procedure with large cut off, are compared with those previously obtained 
using a faster standard procedure with small cut off. The greatest discrepancy was found 
when appreciable coverages occurred at distances from the surface larger than the cut-off 
distance; however, satisfactory accuracy can he achieved with the faster procedure for 
coverages less than about two statistical monolayers and no major modification to previous 
conclusions was found to be necessary. 

1. INTRODUCTION 

Molecular simulation calculations are usually carried out using a pair interaction 
potential with a finite cut off [l, 21. The position of the cut off is determined by the 
size of the periodic cell and considerations of computation time needed to calculate 

the total pair interaction potential. 
The machine averages are then corrected in an approximate manner to take account 

of the neglected long-range tail. Methods of applying this correction in the case of the 

canonical ensemble Monte Carlo [l] and molecular dynamics [2] calculations are well 

established and for liquid argon at T* g 1 and moderate pressures (p* r 0.85) with 
a pair potential cut off at about 2.5 atomic diameters the long-range correction [1] 

to the energy is of the order of 7 % and the correction to the pressure is about -0.56 
reduced units. The estimated errors in the long-range correction terms are less than 

2 % and 4 % for the energy and pressure, respectively. 
In the grand ensemble (II, V, T) MC calculations it is necessary to take account 

of the possible change of the long-range correction at each step in the simulation. This 
requirement was overlooked in earlier work on a homogeneous system [3] resulting 

in an apparent discrepancy between the grand ensemble results and those obtained by 

Hansen and Verlet [4] using a canonical ensemble method. Although it might appear 

natural to consider the correction to density at constant (I*, V, T) which results 
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from these long-range effects, it is more convenient to determine instead the correction 
to p necessary to maintain p and T constant. Barker and Miyazaki [5] have pointed 
out, and we have confirmed, that when this is done the discrepancy mentioned above 
is almost entirely eliminated. For nonuniform systems there is an additional problem 
because the long-range potential distorts the singlet distribution function. 

The general problems arising for a nonuniform system are here illustrated by the 
case of a simple three-dimensional adsorption system involving a planar structure 
(continuum) adsorbent and a simple monatomic adsorbate. The adsorbate molecules 
interact with each other through a pairwise 12-6 potential and with the solid through a 
9-3 potential acting normal to the surface. The results obtained for this system have 
already been described [6]. 

In Section 2 we give equations from which long-range corrections for the MC 
grand canonical ensemble calculations can be found. These are derived in a general 
form which is applicable to nonuniform as well as uniform systems. The singlet 
distribution function corrections are discussed in Section 3. The derived equations 
require several approximations and in Section 4 we examine the validity of these 
approximations by comparing the corrected results with those obtained from a more 
expensive augmented summation procedure [7] applied to a few selected points from 
the adsorption system previously examined [6]. 

2. GENERAL EQUATIONS FOR LONG-RANGE CORRECTIONS IN NONUNIFORM SYSTEMS 

The full pair potential 4(r) is divided into the sum of a short-range part @O)(r) 
and a long-range part fyP(r) where 5 is a coupling parameter which switches on the 
long-range part 

c@“)(r) E [I - H(R - r)] 4(r), (2.la) 

@l)(r) = H(R - r) 4(r), (2.lb) 

where R is the cut-off distance for the short-range potential and H is the Heaviside 
function. 

The connection between the 6 = 0 system (short range only) and the E = 1 system 
(short range plus long range) is most readily made through the Helmholtz free energy 
(constant volume V, temperature T, and number of particles N). 

A relation between the Helmholtz free energy ,4(O) of the f = 0 system and that 
of the t = 1 system, A’“) + ,4(11 is obtained by the standard statistical mechanical 
technique of switching on the long-range part by increasing f, thus 

(2.2a) 

with 
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UN@ = ufi’ + .$?I$’ + w$, (2.2c) 

u$’ = ; cp(tjJ, i = 0, 1, (2.2d) 
k>l 

where Uj,?j and U&l’ are the short- and long-range parts of the total pair potential 
energy, respectively. /3 = l/kT and W$’ is a potential associated with an external 
field which is the origin of the nonuniformity in the assembly of N molecules and 
which in our example is the molecule-wall potential. 

Substitution of (2.2d) into(2.2b) and standard manipulation of the integrals leads to’ 

(U$‘)$‘= &j’d,d s s2 fN(% ; 8 pN62 ; 'k-1 8% , s2 ; 8 +%2) 

where the singlet distribution PN(rl ; 5) is defined by 

(2.3) 

pN(rl ; 8) = N 
s 

dr, .-a drN exp(-puN(t),i j drl ... dr, exp(-BUN([)). (2.4) 

A mean field approximation to A(l) is obtained from (2.3) by setting gf2’ to unity 
for s12 > R. If we also assume pN(sl ; 4) = pN(sl ; 0) we obtain 

Ai', = 4 j ds, 4 PN@I ; 0) pN(s2 ; 0) +"'(S~I). (2.5) 

Taking appropriate derivatives of the long-range part of the Helmholtz free energy 
A(l) the additive long-range corrections to the energy U(l), chemical potential p”‘, 
and diagonal components of the pressure tensor &) can be obtained. 

U'l) = AU' + 
aA’1’ 

/3 (3p-~y.,7 

py = 
-~(~~NRI ’ 

31 = x, I’, z, v = I,l,l, 
’ ‘Y 

p = (2&L).,. 

In the evaluation of these derivatives correlations of the type 

(yq-)$) _ (y'l')($(@) 
N 

(2.6a) 

LY f y; (2.6b) 

(2.6~) 

(2.7) 

were set equal to zero. Here X is a phase function, usually dependent primarily on the 
short-range part of the system, and Y(l) is dependent only upon the long-range part 

‘Notation. Symbols ri , where i is a numerical subscript, refer to the location of labeled particles 
1 *-a N. Unsubscripted r = (rz , r, , e r ) and subscripted s are used to denote continuous variables. 
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of the interaction. It is interesting to note that this assumption, although unstated, 
is commonly made in the computation of long-range corrections. The actual cor- 
relations involved are given in full in Eqs. (Al.2a), (Al.6), (A1.Q and (A2.5). It is 
reasonable to suppose that the relative fluctuation of the long-range component in 
(2.7) Y(l), will be very small and it is justifiable therefore to replace this component by 
a mean value which can be factored out of the first bracket. Further justification for 
this assumption comes, a posteriori, from the agreement between augmented sum and 
corrected data discussed below. From the equations of Appendix I we have therefore 

(J(l) = N/$)/2 = ,&‘, , (2.8a) 

Using Eq. (2.lb) for $(l)(r), (2.8b) can be written 

Pk) = Paz - PO16 3 

~azv = -B s 4 ds, P& 

(2.8b) 

(2.9a) 

(2.9~) 

The term paa arises from the differentiation of the Heaviside function. Note that 
pJ*‘, the pressure of the short-range 5 = 0 system is defined by 

Here $,(rJ is the interaction of a molecule at ri with the wall, i.e., W$’ in (2.2~) is 
Ci +r(ri) and using (2.1 a) for 4’“) we obtain 

p?’ = piMC’ + Pb, (2.11a) 

Pm ‘““V=N,/!?-(&l-H(R- 
i>i 

(2.1lb) 

(2.llc) 
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The term pAMC), defined by Eq. (2.1 lb), is the pressure calculated by molecular 
simulation methods using a truncated potential and the term pi6 in Eq. (2.1 Ic) is 
equal to pas of Eq. (2.9c) in the mean field approximation. Thus using Eqs. (2.10) 
and (2.11) the total pressure, p:“’ + pa , (l) for the full potential is given by 

py + p:’ = pp”’ + pal . 
(2.12) 

We note for #(r) - l/r6 for r 3 R that 

( P~C + P~,Z + pst)v = 64”‘. (2.13) 

3. THE SINGLET DISTRIBUTION FUNCTION 

In [4, Part I], where no long-range corrections were applied to the activity or 
distribution functions it was stated that the average density in the MC cell remote 
from the adsorbing surface was in good agreement with the density of the 12-6 gas 
(five virial coefficients) [8] at the activity. At low activities this implied that j&d(O) is 
equal to Z(O), the activity (2~7fi~/3/rn) exp(flp) where 

and a is a parameter in the range (0.5 < a < 1) used to define the fraction of the box 
to be taken as comprising the “end.” 

However, for the thermodynamic and mechanical equilibrium of the adsorbate 
with the bulk gas it is required that Fend(l) should be equal to the density of the 12-6 
gas at the activity Z(l), i.e., for low activities &d(l) should be equal to Z(1). This 
implies that the long-range corrections must distort the singlet distribution function. 

An approximate equation for PN(r; 1) in terms of PN(r; 0) is derived in Appendix JI 
using the assumption of Eq. (2.7). From Eqs. (A2.7) and (3.1) we have 

&!d = &id{1 f ln(z(l)/z(o))j 

- PWV j a’s pds; 0) j 4 P& ; 0) +Y s, - s I), r, > al, . (3.2) 

It is clear that Eq. (3.2) gives the correct dependence of /5end(l) on Z(1) at low 
activities CD,,,@; 0) + 0, r, > al,) when the last term can be neglected. We then have 
for Z(( 1)/Z(O) z 1, 

Fend(l) E Fend(O) Z(l)/Z(O), (3.3) 

which is the required result. 
In the next section it will be shown that Eq. (3.2) gives the correct Fend(l) for 

higher activities when the gas is nonideal. 
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4. RESULTS FOR ADSORPTION 

Periodic boundary conditions were imposed such that eight replicas of the MC 
box were generated contiguous to it in the xy plane, which is the plane parallel to the 
adsorbent surface. In [6] the cut-off distance for the pair potential was half of the side 
I, of the cell and the minimum image method was used to calculate the pair interaction 
potential. In the new (L) results presented here the cut-off distance used was 31,/2 
and the pair interaction potential was calculated by summing the interaction of each 
particle with all the other particles and their eight images within the cut-off distance. 
This is the “augmented summation” procedure of Wood and Parker [7]. Long-range 
corrections are still necessary in these calculations but are very much smaller than 
those for the smaller box (cf. fiCT’l)/.d values in the table). 

The details of the MC procedure and parameters for the Ar-homogeneous“graphite” 
system used are described in [6]. The final configurations for the runs 4, 6-8 at T* = 
1.002 from [6] were used as starting points for runs 4L, 6L, 7L, and 8L reported in 
the table. The computing time for each configuration from these runs was a factor of 
about I .7 greater than that for the original calculations, which required about 2.0 msec 
per configuration on a CDC 7600. Z(0) was chosen using Eqs. (2.3) and (2.8a) with 
the p,\-(s, ; 0) taken from the 1,/2 runs, so that it gave the same corrected activity Z(1) 
using the cut-off 31,/2 as the corresponding original 1,/2 cut-off run. 

The table gives the number of configurations used for averaging, together with 
the coverage 8, and the uncorrected energy and layer coverages. The long-range 
corrections Z(l)/Z(O) = exp@p”‘) and U(l) to the activity and energy were calculated 
using Eqs. (2.8a) and (2.5). The integral of Eq. (2.5) was simplified by using the fact 
that p,%(r; 0) is a function only of the distance I’, from the adsorbing wall and that 
#i)(szl) g 4/s,, for s$i > R giving 

A(l) 
MF = ’ 

(4.0 

This integralwas evaluated numerically using tabulatedvalues of the grand canonical 
ensemble singlet distribution function from previous MC runs for p,,,(s; 0) [6]. 

The quantity 0,(i) in the table gives a measure of the coverage in the ith layer 
and was calculated with the assumption that each layer had the spacing of the (111) 
planes in fee Ar at OK. This choice for layer thickness differs from that used to calculate 
e(i) in [6] and avoids the need to determine limits from minima in the singlet distribu- 
tion which is particularly difficult for the outer layers at T* = 1.002. The difference 
between 0,(i) and 19(i) is more marked the greater the distance from the surface 
since layer structure no longer provides a very adequate description of the adsorbate. 

Figure 1 shows the mean end density j&d(O) plotted against Z(0) for the runs 1-8 
of [6]. This figure also illustrates the variation of Fend(l) with Z(1) for the runs 4, 
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FIG. 1. Plots of &nd(t) against Z(l) for T* = 1.002. p&d(t) is defined by Eqs. (3.1-3.2). The 
solid curve is the density activity plot for a 12-6 gas using up to the fifth virial coefficient [S] and the 
dotted line is for an ideal gas. 0, 6 = 0 for runs l-8 [6], a = +; 0, 5 = 1 for runs 4, 6-8; f, 
5 = 1 for runs 4L, 6L-8L, a = l/8. 

6-8 and 4L, 6L-8L together with the line for a 12-6 gas (five virial coefficients). The 
j&d(O) points were calculated with a = 4 in Eq. (3.1). For the corrected densities 
deviations from 1 % (4,4L) up to 5 % (8, 8L) of the virial density were found for 
a = 4 but this deviation was negligible for a > 0.87. The decrease of j&r(l) with 
increasing a showed consistent trends for all runs and indicates that the adsorbent field 
still has a measurable effect at considerable distances from the wall and becomes 
negligible only in the final eighth of the box. 

Figure 2 shows plots of the singlet distribution functions p(rZ ; 5) against the 
distance yz from the adsorbent. The uncorrected (4 = 0) and corrected (5 = 1) 
distribution functions for the system of reference [6] (with cut off I,/2 and using 
nearest image interactions) are plotted and can be seen to differ significantly only at 
distances from the surface greater than rz = 3, and even then only for higher degrees 
of coverage. The effect of using the 5 = 1 distribution function in run 8 to calculate 
0,(i) is to produce an increase, as compared with the corresponding L runs of 
0.005, 0.008, 0.008,O.O06, and 0.006 for layers i = 1, 2, 3, 4, 5, respectively. These 
deviations are comparable with the sampling errors of 0.005, 0.006, 0.007, 0.005, 
and 0.004, respectively. 

It can be seen from Fig. 2 that the main difference between 4, 6-8 and 4L, 6L-8L 
distribution functions is in the fourth and higher layers, and the quantitative change is 
shown in Fig. 3 where the increased coverage of the L runs de,(i) for layer i is plotted 
against e,(i). Test runs show that the deviations de,(i) at T* = 0.668 for the runs 
reported in [4] have a similar magnitude for a given e,(i) to the deviations at T* = 1.002 
reported here. 
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FIG. 2. The singlet distribution p(vz ; 8) as a function of rz, the distance from the adsorbent for 
5 = O(n) and 6 = 1 (+) at T* = 1.002. The curves in ascending order are for runs 4, 6, 7, and 8 
and successive curves are displaced by 2.0 and 0.2 ordinate units on the left- and right-hand figures, 
respectively. The right-hand figure illustrates the variation of density beyond rL = 2.00 and most 
of the points at Y, < 2.00 have been omitted for greater clarity. 
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FIG. 3. The increase in coverage for various i for the corrected L runs as a function of the total 
coverage in a layer. The symbols 0, 0, A, + and x are i = I, 2, 3, 4, and 5. 0,(i) values for each 
run are given in the table. All values refer to T* = 1.002. 
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Comparison of the pair contributions to the internal energy per particle between 
the runs 4L, 6L-8L and the 4, 6-8 shows agreement to within the sampling errors. 
The magnitude of the pair contribution to the potential energy per particle of run 
7L is =I % above that of run 7 and the long-range correction to run 7 is gl.6 % of 
the pair part of the potential energy. 

The run 8L is anomalous in that the coverage in the first layer is significantly lower 
than for run 8. This difference is equivalent to one and a half particles over the area 
of the square periodic surface of the MC box. We attribute this anomaly to the 
formation of a metastable state in the first layer and conjecture that the existence of 
this state is related to the geometry and small size of the basic cell. The magnitude of 
the pair contribution to the potential energy per particle of run 8L is g3 % above that 
of run 8 and the long-range correction to run 8 is ~1.8 % of the pair part of the 
potential energy. 

5. DISCUSSION 

The calculation of the long-range correction by means of an augmented summation 
procedure requires a substantial increase in computer time compared with the cor- 
rection method used in [6]. For uniform systems an accurate correction can be made 
without resort to the augmented summation method, but for nonuniform systems 
this is not the case because of the distortion of the singlet distribution function. This 
difficulty would arise in both canonical ensemble and grand ensemble methods and it 
is therefore important to know whether serious error is entailed in carrying out the 
less expensive calculations. 

An important conclusion from the present study is that the two methods give 
identical results, to within the limits of sampling error, when coverage is lower than 
approximately two statistical monolayers. This observation is associated with low 
occupation in the fourth and higher layers. When the density in this region of the 
adsorbate becomes appreciable considerable distortion of the singlet distribution 
function occurs (Fig. 2). This in turn is related to the cut-off distance of R = 1,.2=3.39 
which can be compared with the distance of 2.75 between the fourth and first layers. 
For example if the cut-off distance in a fee structure is changed from R = 31,/2 to 
R = I,/2 the interaction between a particle in layers 2, 3,4, and 5 with the first layer 
would be decreased by 1, ‘7, 27, and 100 %, respectively. 

The correction to the singlet distribution functions, Eq. (3.2), is adequate at large 
distances from the adsorbent wall where the distribution function is uniform, but 
does not provide a large enough correction in the region of the fourth and fifth 
layers when they have a significant coverage. 

One possibility would be to replace the spherical cut off for the pair interaction 
potential by a cut off with cylindrical symmetry so that the most significant part of the 
interlayer interaction was always included in the MC simulation. However, this 
would invalidate the comparison with data for 12-6 argon which have been derived 
for a spherical cut off and in turn reduce the compensation for three-body interactions. 
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A larger system with a longer range of spherical cut off could contain, on average, 
a greater number of particles and the consequent increase in computer time (and 
storage) required for a significant improvement is even greater than that needed for 
the augmented summation procedure. 

An indication of the consistency of the long-range corrections can be obtained by 
comparing Eq. (2.6~) and Eq. (2.8a). These equations imply that plots of ln(-/lU(l)/.d) 
against ln6’ should be linear with a slope of 2.0. The data give good straight lines with 
slopes of 1.943 (T* = 1.002, runs l-8) 2.008 (T* = 1.002, runs 4L, 6L-8L), and 
1.996 (T* = 0.668, runs I-19[4]). 

Values of B for the L runs in this work and the corrected runs previously reported 
in [4] can be compared in the table. The new values do not lead to any serious modifi- 
cation of the conclusions in the earlier work. Thus Polanyi plots, the comparison 
of MC, cell, and lattice models, qst plots, and internal energy data are only slightly 
modified and no significant qualitative change is observed. There is no improvement 
to the BET equation fit when the L runs are used in place of the previous ones and 
FHH plots indicate a reduction (of the order of 15 %) in the 0 exponent S. The low 
value of s compared with that expected from the FHH theory was discussed in [4]. 

It can be concluded that the long-range corrections can be applied, without the 
augmented summation procedure, without generating appreciable error, for coverages 
up to about two statistical monolayers. At higher coverages, there is a distortion in 
the singlet distribution function due to long-range interaction which is not adequately 
corrected by Eq. (A2.7). This distortion leads to small increases in the coverage in 
fourth and subsequent layers but has a negligible effect on the pair interaction energies 
per molecule. 

APPENDIX I: DERIVATIVES OF A(l) 

(i) From the mean field approximation of Eq. (2.5) we obtain 

(+&), ” = / ds, ds, PN(SI ; 0) ( apN$ ; O) ), ” p(szl). (Al.l) 

And using the definition of fN(r; 0) Eq. (2.4) 

N.V s 
= - do, pN(sl ; o){(~$)(s&$))$) - (&)(s&$~<U$‘))!?~, (A1.W 

&)(s,) = f pyj s1 - ri I) - 6 - 1) hh), i = 0, 1. 
j 

(ii) Taking the derivative of Eq. (2.5) with respect to N we have 

(A1.2b) 

(+) v B = j- dS, ds, ,,j& ; 0) ( af N& ’ ‘) ) v B #%I) (A1.3) 
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and from Eq. (2.4) 

= PN+l(S2 ; 0) - PN(S2 ; 0) 

= PN(S2 ; 0) 
N 2 S(l i sz - ri I) Exp(--&t)(r)));’ 

where we have used the equation 

Nil 
z(o)= s dr@qN-Pi!?>>!’ (Al S) 

for the activity Z(0) of the short-range system [9]. 
Using (A1.4) and (A1.3) we have 

(~A$) dr V.0 
3$F ;z,“j J 6 P& ; W(rl!&) Exp(-Pg$‘)(r))% 

- (‘Ilyl)(sl))~)(Exp(--~~)(r))~~ >. (Al .6) 

(iii) Starting from Eq. (2.2a) for Au) and Eq. (2.6b) we have 

- <&f’>k’ ( i. 2 2 (#“)(rii) + &jVij)))g’/]. (A I .7) 

Taking the mean field approximation in the first term of Eq. (Al .7) (i.e., neglecting r 
dependence of the integral and setting gf2) to unity) we obtain 
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APPENDIX II: DISTORTION OF THE SINGLET DISTRIBUTION FUNCTION 

From the definition of P&r; [), Eq. (2.4) and using Eqs. (Al.2b) and Eq. (2.2b) we 
can show 

PA&; 5) = MExP(-~IM(~; ~~))~~I/~ dr(Exp(-~~,,(r;5)))~~1 (AZ.11 

where 

Using the expression 

17hk 5) = rl!)@) + 577!?(r). (A2.2) 

N 
zcn= s dr(Exp(-P~~-dr; EN>!% (A2.3) 

for the activity Z(t) we can write 

m(r; 8 =ZG%Exp(-hdr; O>>% 

= -%%Exp(-P~dr; O>>$‘. (A2.4) 

Differentiating Eq. (A2.4) with respect to t and then integrating from 0 to 1 with 
respect to 5 we obtain 

pdr; 1) - pdr; 0) = -B 1’ 4 Z(~)<~~)(r) EM-hdr; 4)>>!6’ 0 

- B s’ 4 Z(tf){(Vf? Exp(-hdr; 5))>$’ 
0 

- <U%XExp(-&dr; 5)>>k’l 

+,ldfq( Exp(-hdr; J?)>kf’. 
0 

(A2.5) 

Using Eq. (2.7) on the first two members of the right-hand side of Eq. (A2.5) and 
employing Eqs. (A2.1) and (A2.4) it is straightforward to obtain 

Making a mean field approximation and ignoring the 5 dependence of pN(r; 5) on 
the right-hand side of Eq. (A2.6) we have 
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We note that this approximation for P,,,(r; 1) in terms of pN(r; 0) conserves the 
number of particles IV, since by integrating both sides over all r we obtain 

N = N(l + ln(Z(l)/Z(O)) - 2&42’, , 

which is equivalent to Eq. (2.8a) when we have /3p(l) = In(Z(l)/Z(O)). 
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